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1. Introduction

It is a fundamental problem in arithmetic statistics to provide asymptotic counts for arithmetic
objects. Doing so allows us to ask interesting statistical questions about these objects. For example,
for any odd prime p, what is the probability that a random quadratic number field (ordered by
discriminant) is ramified at p? On the first problem set, we showed that the number of quadratic
number fields of discriminant less than T is asymptotic to

∏
p(1−

1
p2
)T and used this result to show

that the probability in question is 1/(p+ 1).

However, actually proving these asymptotics can be quite challenging. Usually, the proof in-
volves finding a nice parameterization of the object in question—a bijection from the set of arithmetic
objects we are interested in to some set of objects that is easier to count—and then providing an
asymptotic count for the second set of objects (usually this involves some kind of sieve argument).

In their seminal paper, On the density of discriminants of cubic fields (see [2]), Davenport and
Heilbronn proved that the number of cubic fields with discriminant having absolute value less than
T is asymptotic to T/(3ζ(3)). Their method, which involves parameterizing cubic number fields by
binary cubic forms, along with some class field theory, also gives asymptotics for the 3-torsion in
the class groups of quadratic number fields. Proving this result is the motivation for this paper, yet
we will not adhere to Davenport and Heilbronn’s approach.

Instead, we will present a parameterization of the 3-torsion in the class groups of quadratic
number fields due to Bhargava. In his paper (see [1]), Higher composition laws I: A new view
on Gauss composition, and quadratic generalizations, Bhargava generalizes Gauss’s famous law of
composition of integral binary quadratic forms by deriving a law of composition on 2×2×2 cubes of
integers. This more general law of composition on cubes yields four new laws of composition on (1)
binary cubic forms, (2) pairs of binary quadratic forms, (3) pairs of quaternary alternating 2-forms,
and (4) senary alternating 3-forms. Recall that Gauss composition gives us a parameterization of the
class group of a quadratic number field of discriminant D by the GL2(Z)-orbits of integral binary
quadratic forms. Likewise, Bhargava’s higher composition laws not only return Gauss’s original
result but also give several new interesting parameterizations, one of which is the aforementioned
parameterization of the 3-torsion in the class group of a quadratic number fields.

2. A group law on cubes

We begin by considering the space of 2 × 2 × 2 cubical integer matrices and define a natural
action of Γ = SL2(Z) × SL2(Z) × SL2(Z) on this space. Denote the space (Z2)⊗3 by C2. Because
C2 is a free abelian group (i.e., Z-module) of rank 8, each element can be represented as a vector
(a, b, c, d, e, f, g, h). More intuitively, we may represent the elements of this space by cubes of
integers:

(1) c d

g
h

a
b

e f
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Alternatively, if {v1, v2} is the standard basis of Z2, then the elements of C2 can be written as∑
i,j,k

aijkvi ⊗ vj ⊗ vk

for 1 ≤ i, j, k ≤ 2 and aijk ∈ Z instead. However, from here on out, we’ll stick to the cubical
representation, since this representation is both more convenient and intuitive.

Now, the three planes of symmetry of the cube allow us to partition each cube in C2 into two
2×2 integral matrices in three ways—Bhargava calls these the fundamental slicings. More explicitly,
if A denotes the cube in (1), these slicings give us the following pairs of 2× 2 matrices:

M1 =

[
a b
c d

]
, N1 =

[
e f
g h

]
,

or
M2 =

[
a c
e g

]
, N2 =

[
b d
f h

]
,

or
M3 =

[
a e
b f

]
, N3 =

[
c g
d h

]
.

It is from these slicings that we define our action of Γ = SL2(Z) × SL2(Z) × SL2(Z) on our
space. In particular, we begin by defining how an element of SL2(Z) in the ith factor of Γ acts on
the cube, and then show that the actions of the three factors of SL2(Z) in Γ commute, thus giving
us a natural action of Γ on C2. Let an element[

r s
t u

]
in the ith factor of SL2(Z) in Γ act on the cube A by taking (Mi, Ni) 7→ (rMi + sNi, tMi + uNi).
Checking that the actions of each of the factors commute is straightforward (hint: row and column
operations commute), and we omit this detail for the sake of brevity. Therefore, we have a well-
defined, natural action of Γ on C2.

Given any cube A ∈ C2, we may associate to A three binary quadratic forms,

Qi(x, y) = QA
i (x, y) := −det(xMi − yNi)

for 1 ≤ i ≤ 3. Because acting by the subgroup {id}× SL2(Z)× SL2(Z) ⊂ Γ is the same as applying
row and column operations to M1 and N1, we see that Q1 is invariant under the action of this
subgroup, implying that the value of −det(xM1 − yN1) is unchanged. The subgroup SL2(Z) ×
{id} × {id} acts on Q1 in the usual way: (M, 1, 1) ·Q1(x, y) = Q1(M

T (x, y)) (i.e., we apply Q1 to
the vector given by applying MT to (x, y)). Thus, we see that the discriminant disc(Q1) of Q1 is an
invariant for our Γ-action on C2 = Z ⊗ Z ⊗ Z. A computation tells us that disc(Q2) and disc(Q3)
are both equal to disc(Q1) (in fact, disc(Q1) is the unique polynomial invariant for this action; see
page 220 of [1] or [3]), and thus we may unambiguously define the discriminant of our cube A to be

disc(A) = disc(Q1).

Another computation tells us disc(A) explicitly:

disc(A) = a2h2 + b2g2 + c2f2 + d2e2

− 2(abgh+ cdef + acfh+ bdeg + aedh+ bfcg) + 4(adfg + bceh).

Now, consider the free abelian group on the set of primitive binary quadratic forms of discrim-
inant D (recall that primitive means the coefficients of the form are relatively prime) and quotient
by the subgroup generated by the forms QA

1 + QA
2 + QA

3 for each QA
i a primitive quadratic form

given by the same cube A with disc(A) = D.
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By imposing this additional condition, the SL2(Z)-equivalent forms (under the standard action)
are identified with each other. In other words, SL2(Z)-equivalent forms are “cube equivalent.” To
see why this is the case, let γ = (γ1, 1, 1) ∈ Γ, and let A be a cube giving the three forms Q1, Q2, Q3.
Then γA gives the three forms Q′

1, Q2, Q3, and another explicit computation tells us that Q′
1 = γ1Q1.

In the quotient group described in the paragraph above, Q1 +Q2 +Q3 and Q′
1 +Q2 +Q3 are both

sent to 0, and hence, Q1 and Q′
1 are identified. It remains to show that any such integral binary

quadratic form f(x, y) = rx2 + sxy + ty2 actually arises as QA
1 for some cube A. But this can be

easily seen by computing QA
1 for

A = (a, b, c, d, e, f, g, h) = (r, 0, 0, 1, s,−t, 1, 0).

This allows us to think of the group law in the quotient group as a law of addition which descends
to a law of addition on the SL2(Z)-orbits of of binary quadratic forms of discriminant D. In fact,
choosing an appropriate identity element makes this set of SL2(Z)-equivalence classes of primitive
binary quadratic forms of discriminant D into a group!

In particular, we have the following. From here on out, for any binary quadratic form Q, let
[Q] denote its SL2(Z)-equivalence class.

Theorem 2.1. Let D be any integer congruent to 0 or 1 mod 4. Suppose Qid,D is any primitive
binary quadratic form with discriminant D such that there is a cube A0 with the property that
QA0

1 = QA0
2 = QA0

e = Qid,D. Then there exists a unique group law on the set of SL2(Z)-orbits of
primitive binary quadratic forms of discriminant D with the following significance.

(1 ) [Qid,D] is the additive identity;

(2 ) For any cube A with disc(A) = D and QA
1 , Q

A
2 , Q

A
3 primitive, then [QA

1 ]+[QA
2 ]+[QA

3 ] = [Qid,D].
On the other hand, if Q1, Q2, Q3 are such that [Q1] + [Q2] + [Q3] = [Qid,D], then there exists a
cube A of discriminant D such that QA

i = Qi for all i, and A is unique up to Γ-equivalence.

The usual choice of identity element is

Qid,D = x2 − D

4
y2 or Qid,D = x2 − xy +

1−D

4
y2,

which (must) correspond to the following cubes:
(2)

1 0

0
D/4

0
1

1 0

Aid,D =

1 1

1
(D + 3)/4

0
1

1 1

Aid,D =

respectively. The two options for Qid,D correspond to the cases D ≡ 0 mod 4 and D ≡ 1 mod 4,
respectively.

Theorem 2.1 also tells us that the cubes of discriminant D giving rise to triples of primitive
quadratic forms form a group as well. We call a cube projective if QA

i is primitive for 1 ≤ i ≤ 3.
Let [A] denote the Γ-orbit of A. The following is an easy consequence of Theorem 2.1:
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Theorem 2.2. Suppose D is any integer congruent to 0 or 1 mod 4. Let Aid,D be the cube defined
by (2). There exists a unique group law on the set of Γ-equivalence classes of projective cubes of
discriminant D with the following significance. (1) [Aid,D] is the identity element; (2) the map
[A] 7→ [QA

i ] is a group homomorphism to the group from Theorem 2.1 for 1 ≤ i ≤ 3. Denote this
group by Cl(Z2 ⊗ Z2 ⊗ Z2;D).

While we will not prove Theorem 2.1 or Theorem 2.2, the law of composition on cubes gives
a natural law of composition on SL2(Z)-equivalence classes of integral binary cubic forms with
triplicate central coefficients, px3 + 3qx2y + 3rxy2 + sy3. Let Sym3 Z2 denote the space of binary
cubic forms with triplicate central coefficients. To each such binary cubic form, we associate the
triply-symmetric cube

(3) q r

r
s

p
q

q r

which gives us a natural inclusion ι : Sym3 Z2 → Z⊗ Z⊗ Z.

The inclusion ι along with the SL2(Z)-action on Sym3 Z2 and the Γ-action on C2 begs the
question: is there a way of viewing the action of M ∈ SL2(Z) on a binary cubic form C ∈ Sym3 Z2

as the action of an element γ ∈ Γ on ι(C)? In general, if C ∈ Sym3 Z2, then γ ·ι(C) is not necessarily
in the image of ι. This makes sense, since Γ = SL2(Z) × SL2(Z) × SL2(Z) and we only have an
SL2(Z)-action on Sym3 Z2, rather than a Γ-action. However, ι is SL2(Z)-equivariant if we restrict
to a specific subgroup of Γ isomorphic to SL2(Z). Consider the natural inclusion of SL2(Z) ↪→ Γ
given by M 7→ (M,M,M), and note that the image of this inclusion is isomorphic to SL2(Z). We
see that (M,M,M) · ι(C) = ι(M · C), implying that ι is a SL2(Z)-equivariant map, as desired.

Thus, a binary cubic form C ∈ Sym3 Z2 is said to be projective if ι(C) is projective. If C is
given by C(x, y) = px3+3qx2y+3rxy2+ sy3 and is projective, then the corresponding forms Qι(C)

i
are all given by

H(x, y) = − 1

36

∣∣∣∣Cxx Cxy

Cyx Cyy

∣∣∣∣ = (q2 − pr)x2 + (ps− qr)xy + (r2 − qs)y2.

It follows that C is projective if and only if H is primitive. Thus, for C to be projective, it suffices
to check whether gcd(q2 − pr, ps− qr, r2 − qs) = 1.

Note that ι introduces a discrepancy: for some binary cubic form C ∈ Sym3 Z2, there are now
two different ways of defining disc(C). In particular, disc(C) could denote the discriminant of C
as a polynomial or its discriminant as a cube, which differ by a factor of −27. From here on out,
assume that disc(C) refers to disc(ι(C)), the discriminant of the cube ι(C). We will see why this
viewpoint is useful when we prove Theorem 3.1.

Depending on whether D is 0 or 1 mod 4, the identity cubes (2) are given by

Cid,D = 3x2y +
D

4
y3 or Cid,D = 3x2y + 3xy2 +

D + 3

4
y3
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respectively. As usual, let [C] denote the SL2(Z)-equivalence class of C ∈ Sym3 Z2.

Theorem 2.3. Suppose D is any integer congruent to 0 or 1 mod 4. Let Cid,D be as in the above.
Then there exists a unique group operation on the set of SL2(Z)-equivalence classes of projective
binary cubic forms C of discriminant D with the following significance. (1) [Cid,D] is the additive
identity; (2) the map [C] 7→ [ι(C)] is a group homomorphism to Cl(Z2 ⊗ Z2 ⊗ Z2;D). Denote this
group by Cl(Sym3 Z2;D).

3. Parameterizations

This section will be entirely devoted to proving the following theorem, from which most of our
results follow. In the following, recall that by disc(f) we mean disc(ι(f)), the discriminant of f
when viewed as a cube (rather than as a binary cubic form).

Theorem 3.1. There exists a canonical bijection between

{f ∈ Sym3 Z2 | disc(f) ̸= 0}/SL2(Z)
and the equivalence classes of triples (S, I, δ), where S is a nondenerate (discriminant nonzero)
oriented quadratic ring, I is a fractional ideal of S, and δ is some element in (S ⊗ Q)× with the
following properties: I3 ⊂ δS and N(I)3 = N(δ). Moreover, for f ∈ Sym3 Z2, disc(f) is equal to
the discriminant of the corresponding quadratic ring.

By quadratic ring, we mean a commutative ring (with unit) whose underlying structure as an
additive group is Z2 (the name quadratic ring comes from the fact that the classical example of
such a ring is the ring of integers of a quadratic number field). For any α in such a quadratic ring
R, the trace of α, denoted tr(α), is the trace of the linear map R → R given by multiplication by
α. As in algebraic number theory, if {αi} is a Z-basis for R, we say that det(tr(αiαj)i,j) ∈ Z is the
discriminant of R, which we denote using disc(R). This quantity is independent of the basis we
choose.

Recall that all quadratic rings have exactly two automorphisms. Stickelberger’s criterion tells
us that disc(R) is congruent to 0 or 1 mod 4. Conversely, given any integer D congruent to 0 or
1 mod 4, there is a unique quadratic ring with discriminant D. Thus, we have a parameterization
of isomorphism classes of quadratic rings by the elements of Z congruent to 0 or 1 mod 4, but this
parameterization is not quite ideal since quadratic rings have two automorphisms (in the number
field case, this corresponds to the fact that Q(

√
D) = Q(−

√
D), i.e., we have two choices for

√
D)

while the elements of Z in question only have one. In other words, we have a parameterization up
to noncanonical isomorphism.

To rectify this situation, we consider oriented quadratic rings, which are defined to be quadratic
rings where a specific choice of isomorphism π̄ : S/Z → Z has been made. Such a ring only has one
automorphism, and it follows that any two oriented quadratic rings with the same discriminant are
canonically isomorphic. Equivalently, we see that a quadratic ring is oriented once we choose

√
D.

Such a choice determines a canonical projection π : S → Z given by π(x) = tr(x/
√
D) = (x−x̄)/

√
D,

where x̄ denotes the image of x under the nontrivial automorphism of S (in the case of number
fields, this is the Galois conjugate of x). This projection π must have kernel Z and thus induces an
isomorphism π̄ : S/Z → Z, implying that these two viewpoints are the same.

Another solution to this issue is the following. We may define a (trivial) Z×-action of integers,
and then parameterize quadratic rings by the Z×-orbits of this action. This way, the stabilizer of
each integer in Z is the correct group, Z/2Z. Thus, there is no longer a need to pick an orientation
and we can instead use an action of GL2(Z). In this case, GL2(Z) acts on a binary quadratic
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form by M · f(x, y) 7→ 1
det(M)f(M

T (x, y)). One advantage of this viewpoint is that, in the case of
Gauss composition, we get a bijection between GL2(Z)-orbits of primitive binary quadratic forms
of discriminant D and the class group of S(D), Cl(S(D)). When using the action of SL2(Z), our
bijection is between SL2(Z)-orbits of primitive binary quadratic forms of discriminant D and the
narrow class group of S(D), Cl+(S(D)). While this difference is mainly aesthetic, it is perhaps
easier to see the usefulness of the GL2(Z) approach at first glance. We consider SL2(Z)-orbits,
however, because this setup is slightly cleaner in terms of exposition.

Now, recall that any quadratic ring S can be written as Z + Zτ , where the multiplication is
given by

τ2 =
D

4
or τ2 =

D − 1

4
+ τ,

depending on whether or not D is congruent to 0 or 1 mod 4. We define what it means for a basis
to be oriented : Given a quadratic ring S = Z + Zτ , we say that the basis {1, τ} of S is positively
oriented if π([τ ]) > 0. Then, we say that any pair of linearly independent elements α, β ∈ K = S⊗Q
is positively oriented if the linear map taking (1, τ) 7→ (α, β) has positive determinant. We define
the norm of an ideal I of a quadratic ring S to be the following: let (α, β) be a Z-basis of I, and
let M ∈ GL2(Q) be the linear map taking (1, τ) 7→ (α, β). Let N(I) = det(M). Finally, let (S, I, δ)
and (T, J, ϵ) be two triples as in Theorem 3.1. We say that these triples are equivalent if there
exists some isomorphism ϕ : S → T and element κ ∈ T ⊗ Q such that J = κϕ(I) and ϵ = κ3ϕ(δ).
Checking that this is indeed an equivalence relation is not difficult. We are now ready to prove
Theorem 3.1.

Proof of Theorem 3.1. We’ll begin by showing how to construct a binary cubic form given a triple
(S, I, δ). Let S = Z + Zτ and let (α, β) form a positively oriented Z-basis for I. In particular,
depending on whether disc(S) is congruent to 0 or 1 mod 4, let τ be such that τ2 − D/4 = 0 or
τ2 − τ + 1−D

4 = 0, respectively. We see that I3 is generated as a Z-module by the four products
α3, α2β, αβ2, β3 ∈ I3 ⊂ δS. Since I3 ⊂ δS, we may write

(4) α3−iβi = δ(ci + aiτ) for 0 ≤ i ≤ 3

and ai, ci ∈ Z. We associate to (S, I, δ) the binary cubic form

C(x, y) = a0x
3 + 3a1x

2y + 3a2xy
2 + a3y

3 ∈ Sym3 Z2.

Firstly, we need to check is that C(x, y) does not depend on our choice of bases (α, β) for I and
(1, τ) for Z. To see this, we claim that C(x, y) = π((αx+βy)3), where π is the associated canonical
projection π : S → Z. This follows from simply applying π to

(αx+ βy)3 = α3x3 + 3α2βx2y + 3αβ2xy2 + βy3

(recall the definition of the ai’s). Therefore, we may define C in a basis free manner: as the map from
I → Z taking ζ 7→ π(ζ3). Given another (positively oriented) basis (α′, β′) of I, let M ∈ SL2(Z)
be the change of basis matrix taking (α, β) to (α′, β′). Our basis-free description of C then tells
us that changing bases to (α′, β′) will just change C(x, y) to M · C(x, y) = C(MT (x, y)), implying
that the SL2(Z)-orbit associated to (S, I, δ) is independent of the choice of basis for I. Moreover,
we may realize M · C(x, y) by changing our basis of I to M(α, β). Now, let (S, I, δ) and (T, J, ϵ)
be two equivalent triples so that there exists an isomorphism ϕ : S → T and element κ ∈ T ⊗ Q
such that J = κϕ(I) and ϵ = κ3ϕ(δ). We claim that both triples give rise to the same cubic forms
C(x, y); we consider the cubic form associated to (T, J, ϵ) given by the basis α′ = κϕ(α), β′ = κϕ(β)
for J . Let τ ′ = ϕ(τ), and note that

(α′)3−i(β′)i = κ3ϕ(α3−iβi) = κ3ϕ(δ)(ci + aiτ
′) = ϵ(ci + aiτ

′) ∈ J.

It follows that the form associated to (T, J, ϵ) is exactly C(x, y).
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Now, we prove that the map defined in the above, from equivalence classes of triples (S, I, δ)
to SL2(Z)-orbits of Sym3 Z2, is indeed a bijection.

To do this, consider some form C(x, y) ∈ Sym3 Z2. We will show that there is exactly one triple
(S, I, δ) (up to equivalence) that gives the form C(x, y) under the map described in the above.
Recall from Section 2 that C(x, y) corresponds to the cube of integers ι(C),

a1 a2

a2
a3

a0
a1

a1 a2

to which we can assign a well-defined discriminant disc(C) = disc(ι(C)). Recall from earlier that
the discriminant of C is not the discriminant of C as a polynomial. Rather, it is the discriminant
of the unique cube we may associate to C, ι(C). Also recall the system (4) from earlier, and note
that, with C fixed, only the ai’s are determined (with everything else indeterminant).

To see that C(x, y) determines the ring S, recall that it suffices to show that disc(S) is deter-
mined (recall S is a quadratic ring) by our system (4). To do so, we will need the identity

disc(C) = N(I)6N(δ)−2disc(S).

We first prove the identity in the special case where we take I = S and δ = 1. As before, write
S = S(D) = Z+Zτ , and consider the special (simple) case where I = S, α = 1, and β = τ . In this
case, it is easy to check that C(x, y) = Cid,D; note that the cube Cid,D has discriminant N(δ)2D =
disc(S) (the N(δ)2 factor comes from scaling everything by δ and taking the discriminant). Hence,
we have that disc(C) = N(δ)−2D = N(δ)−2disc(S), as desired.

For the general case, assume that I is now a general ideal of S with Z-basis (α, β). We may
write (α, β) = M(1, τ) for some M ∈ SL2(Q), and we see that the cube in (4) is given by applying
(M,M,M) ∈ Γ to Cid,D. For the sake of brevity, we omit checking the details explicitly (lots of gross
algebra). If we act on the cube Cid,D one factor at a time (i.e., first by (M, e, e), then (e,M, e),
and finally (e, e,M); recall that the actions of the factors of Γ commute), another computation
shows that acting by (M, e, e) multiplies the quadratic form Q

(M,e,e)Cid,D

2 by det(M) = N(I). This
multiplies the discriminant of (M, e, e)Cid,D by N(I)2. Similarly, acting by (e,M, e) and (e, e,M)
both scale the discriminant by N(I)2; this establishes the identity in full generality. Now, our
assumption that N(I)3 = N(δ) tells us that disc(C) = disc(S), implying that disc(S) (and thus S
itself) is determined by our form C.

Next, we show that the ci’s are also uniquely determined by C. Rewrite (α2β)2 = α3 · αβ and
(αβ2)2 = α2β · β3; these identities follow from the commutativity and associativity of S. Using (4),
we may rewrite both of these equations to give two linear and two quadratic equations in our four
variables c0, c1, c2, c3. As long as (α, β) has positive orientation, we can show that this system has
exactly one solution. We’ll illustrate this for the case where τ2 = D/4; the other case is similar.
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Rewriting the two identities as suggested above, we see that

(c21 + a21D/4) + 2a1c1τ = (c0c2 + a0a2D/4) + (a2c0 + a0c2)τ

(c22 + a22D/4) + 2a2c2τ = (c3c1 + a3a1D/4) + (a1c3 + a3c1)τ.

This gives the following system of equations

2a1c1 = a2c0 + a0c2(5)
2a2c2 = a1c3 + a3c1(6)

c21 + a21D/4 = c0c2 + a0a2D/4(7)

c22 + a22D/4 = c3c1 + a3a1D/4.(8)

Finally, the requirement that (α, β) has positive orientation tells us that the map taking 1 7→ α
and τ 7→ β must have positive determinant. While α and β are undetermined still, we note that
the map taking 1 7→ 1 and τ 7→ β/α has the same determinant as the aforementioned map. By
considering

β

α
=

β2α

αβ2
=

c2 + a2τ

c1 + a1τ
,

some computation shows that the condition (α, β) is of positive orientation if and only if

a2c1 − a1c2 > 0.

Now, (5) and (6) are linear equations that allow us to write c0 and c3, respectively, in terms of
c1 and c2. Plugging these into (7) and (8) gives us two quadrics in c1 and c2. Using a computer,
we can compute that there is exactly common root of these quadrics subject to the condition
a2c1 − a1c2 > 0. In particular, we find that there are four common solutions to the two quadrics;
note that solutions must come in pairs, since if (c0, . . . , c3) is a solution to the system above, then
so is its negative, (−c0, . . . ,−c3). One of the solutions (exhibited below), along with its negative,
is integral, and the other two involve

√
D. In the case that D = disc(S) = disc(C) is not a square,√

D is irrational, and neither of these additional solutions are possible, since the ci’s are necessarily
integral. Thus, we have a unique solution satisfying a2c1 > a1c2 (we can compute that the solution
given below indeed satisfies this inequality when D ≡ 0 mod 4). However, in the case where D is a
square, this argument breaks down. In this case, there are only two solutions in which α and β are
linearly independent (we’ll show later that we may take α = c1 + a1τ and β = c2 + a2τ), which are
the solution given below and its negative.

This unique solution to the system in question is given by

c0 =
2a31 − 3a0a1a2 + a20a3 − εa0

2
,

c1 =
a21a2 − 2a0a

2
2 + a0a1a3 − εa1
2

,

c2 = −a1a
2
2 − 2a21a3 + a0a2a3 + εa2

2
,

c3 = −2a32 − 3a1a2a3 + a0a
2
3 + εa3

2
,

where ε = 0 or ε = 1 if D ≡ 0 or D ≡ 1 mod 4, respectively. Therefore, the ci’s are also entirely
determined by our form C.

We also see that (4) implies that

(9)
α2β

αβ2
=

α

β
=

c1 + a1τ

c2 + a2τ
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This tells us that α and β are determined (uniquely) up to scaling by elements of S ⊗Q. Fix an α
and β, say α = c1 + a1τ and β = c2 + a2τ , and note that this uniquely determines δ by (4). If we
rescale α and β by some κ ∈ S ⊗ Q, then we see that we must rescale δ by κ3. Hence, we have a
unique triple (S, I, δ) (up to equivalence) that is sent to the form C under the mapping defined at
the beginning of the proof.

There is one last thing to check: I, as we have written it, is simply the Z-module generated by
α and β, not necessarily an ideal. To rectify this, we show that I is an ideal of S; we may actually
write down the S-module structure on I explicitly. Using our explicit expressions for α and β,
α = c1+ a1τ and β = c2+ a2τ , in addition to our expressions for ci’s in terms of the ai, we see that

τα =
q + ε

2
α+ pβ

and
−τβ = rα+

q − ε

2
β,

where
p = a21 − a0a2, q = a0a3 − a1a2, r = a22 − a1a3

and where ε = 0 or ε = 1 in accordance with whether D is congruent to 0 or 1 mod 4, respectively.
We note that the quadratic form Q associated to the binary cubic form C (viewed as an integral
cube) is exactly

Q(x, y) = px2 + qxy + ry2.

Therefore, I is indeed an ideal of S, and we are done. □

4. Consequences

The following are immediate consequences of Theorem 3.1. Let Cl3(R) denote the 3-torsion
(i.e., the elements with order dividing 3) in the ideal class group of an integral domain R.

Corollary 4.1. Denote the quadratic ring of discriminant D by S(D). There is a natural surjective
group homomorphism

Cl(Sym3 Z2;D) ↠ Cl3(S(D)).

The cardinality of the kernel of this homomorphism is |U/U3|, where U is the group of units in
S(D).

The case where S(D) is the ring of integers of a quadratic number field K is significant and the
main goal of this paper:

Corollary 4.2. Let D be a disriminant of a quadratic number field K. Then there is a canonical
surjective homomorphism

Cl3(Sym3 Z2;D) ↠ Cl3(K).

The kernel of this map has size {
1 if D < −3;

3 otherwise.
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